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Extraction of backgrounds in fluctuating systems
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We undertake an extensive analytical study on the “generalized detrended fluctuation analysis” method,
designed to detect the scaling behaviors of fluctuating systems but exclude out the influences of the back-
grounds(or the trends Through our extensive studies, we systematically extract out the exact backgfounds
the trends of the fluctuating systems to any order, expressed in terms of the Legendre polynomial. Our results
are exact and can be applied to anyH1)-dimensional continuous fluctuating systems.
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Fluctuating systems have drawn considerable interest fdooth  experimentally and numerically that some
the generic behaviors widespread in nature and society, su¢i + 1)-dimensional growth processes are “super-rough,”
as molecular-beam-epitaxy interface growih2], DNA se-  since their saturated global interfacial widths relative to the
quenceq 3,4], physiology signalg5-7], atmospheric vari- average interfacial heights diverge faster than the lateral sys-
ability [8], and currency exchange rated. Plenty of fluc- tem sizeL. The most distinct feature of the super-rough in-
tuating systems contain noisy “signals,” which are terface is that its local spatiotemporal scaling is different
statistically heterogeneous and exhibit various types of nonfrom its global spatiotemporal scaling; namely, the local in-
stationarity. For example, in meteorology the variations oftérfacial widths relative to the average interfacial heights,
the daily maximum temperatures from their average value§'€@sured within a local window of sid¢<L), have very
have trends in time due to global warmifg], in financial different dynamic scaling behavior from that of the global

markets the currency exchange rates obviously have trené@terfac?al widths. The main reason is thf"‘t all th? super-rpugh
in time due to the relative economic conditions in diﬁerent'nterfac'al growth processes are associated with local inter-

countries[9], and in computational molecular biology the f_acial orient_ati(_)nal instability bu_t,_ at the same time, with
: ' ; . fixed or periodic boundary conditions restricting the devel-
nucleotlded (;oncer;]tratmns in DNA sequences are lhe;erog%—pmem of the global interfacial width. We have proposed
neous and form the mosaic structu . Penget al. ~
then proposed a method “detrendg%sﬂluctua?ion arEa%ysis{lA'.’lq a defin_ition of _the I_ocal interfacial yvidtbv(l,t), the
(DFA), designed to detect and quantify the long-range correfeSIduaI local interfacial width, as follows:
lation in DNA sequences but exclude the artifact long-range ~5 _ = 5
correlation causgd by the DNA's mosaic structtﬁpatghi- ’ wALD=(h( O =MD, @
ness. The algorithm of the DFA method is given as follows. with h(x,t) denoting the interface height from a flat substrate
Let y(i) be a sequence of length Then, a sliding observa- ¢ positionx and timet, i, (x,t) denoting the height at posi-
tion window of lengthn is chosen and slid across the whole o, x of 4 straight line segment obtained by least squares fit
data set. Inside the observation window, the linear trendy the interfacial configuration in the local window of size
y(i)=ai+b of the original profiley(i) is eliminated, with  at a given time, (- - -), denoting the lateral spatial average
the parametera andb obtained from the least squares fit of over a local window of sizé, (- - -), denoting the sliding of
the difference between the linear trepfl) and the original  the local window over the whole system of sizeand finally
profile y(i). Finally, one calculates the variance with respectthe overbar denoting the average over randomness. Clearly,

to the linear trend from the original profile, takes the averagéy(l,t) describes the width of the interfacial height fluctua-
over all the windows of lengttm, and then denotes it by tion relative to the local interfacial orientation within a local
Fﬁ(n), the square of the detrended fluctuation function. Thisyindow of sizel. We then have showfi4,15 that, for the
method first demonstrated its usefulness in the investigatiosuper-rough growth processes which form the mountains or
of long-range correlation in the noncoding regions of DNAthe valleys in the interface configuration, the residual local
sequences; since then, it has been widely adopted as a stamterfacial widths retrieve the same dynamic scaling as the
dard method in analyzing time series problems in variouglobal interfacial widths. Although the DFA method is
fields. In addition, its generalization by including higher- mainly used in the analysis of fluctuating time series and the
order trends in the analysis, the “generalized detrended fluacesidual local interfacial width is used in the study of the
tuation analysis{GDFA) method, has recently been numeri- snapshot of (% 1)-dimensional super-rough interface mor-
cally studied in detail in Ref4.10,11]. phology at a certain time, the spirits of their mathematical

On the other hand, recently much attention has been foformulation are exactly the same; i.e., they both are designed
cused on the super-rough growth processes for their peculias eliminate the influences of the trendsr the back-
interfacial morphology[2,12—-13. It has been observed grounds.
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Although the GDFA method is so widely used, there re-
main some unsettled issues. (YOO (X—X) %), 5= E Mg ((x— x)ata’ Mix
(1) For the correct estimate of the scaling exponents,
high-order detrending are frequently requiféd6]. Then, it q+q’
will involve the numerical least squares fit of many param- 0 (_) [1+(— 1)q+q’]
eters at the same time and, thus, consume large CPU time. _ 2 M 2
(2) Many fluctuating time series problems and kinetic in- oy a’ 2(q+q' +1)
terfacial roughening processes are modeled by continuous
stochastic differential equations. Thus, the explicit and exact (6
expression of the tren@r the backgroundto any order can
greatly help the analytical study of such equations. Consequently, we have
Therefore, we are strongly motivated to take an extensive
analytical study on the GDFA method and plan to extract out p .
the exactexpressions of the backgrounéts the trendsin Mg= 2 [A Mg (YOO (X=X ), (0
fluctuating systems to any order. q'=
First, let y(x) denote some continuous stochastic se-
quence of lengthL. For example, to describe time series Where the elements of thgx p matrix A are
problems,x andy simply represent time and the physical
guantity to be measured, respectively; to describe the snap- |\a+a )
shot of the (& 1)-dimensional super-rough interface mor- (5) [1+(—1)979]
phology at a certain timex andy then denote the spatial Ay = ] (8)
coordinate along the substrate direction and the interfacial 2(q+q’'+1)
height, respectively. The variance pfx) in an observation

window, centered at, of lengthl is then given as Thus, to obtain the explicit form dfl, involves an inverse
transform of thepxXp matrix A, which usually relies on
SR 5 computers for large values @f However, the derivation of
w21 x)=(Ly() = (YOO 1501 (2) the explicit form of the coefficientM, is necessary for any
further analytical studies such as obtaining the exact relation

. 2
with (- - )5 denoting the average over an observation win- _betweerw?(1;x) [the original variance of(x) in an obser-

dow, centered ax, of lengthl. Using apth degree polyno- vation window, centered at, of lengthl] and w? o(l; X) (its
mial to extract the contribution from the backgrouridsthe ~ Pth degree detrended variance in that observation window
trends, the pth degree detrended variance yfix) in that O exploring the exact influences of the backgroutatsthe

observation window of lengthis defined as trends on the fluctuating systems, etc. .
Fortunately, with a closer look at E¢p), we note that this

A L complication of the inverse matrix transform can actually be
Wi (1) =([Y(X) = Yp(%:X) 1315 (3)  avoided if the basis of,(x;x) is deliberately chosen to be
the polynomials of degree O { orthogonal to one another.

. . . Legendre polynomiaP(x) [16] is just a perfect candidate
where thepth degree polynomiayy(x;x) is obtained from  gince it is a polynomial of degreg given by
the least squares fit tp(x) within that observation window.

Naively, people will naturally choose [q/2]

(2q—2j— 1)1

1)) x4, 9
p =2 V' Gz ©
Yo(X:X)= 2>, Mg(x—X)9 4
Ypxix) qzo al ) @ and satisfies the orthogonal relations
with the coefficientM , obtained from the relation
q f dXPy(X)Pqr(X) = 2q+15q q - (10
AWA(1:%) P . -
=L o |yx)—- > Mg (x—%)4 Thus, we choose Legendre polynomR[2(x—x)/I], in-
Mg '=0 stead of k—X)9, to be the basis of,(x;x); namely,
><(x—§<)q> : (5) S 2(X—X)
Iix yp(x;><)=q§=}O CqPq| — (12)
Then, with the coefficientC, obtained from the relation
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AW(1;X) P 2(x—X Yo X)=(y(X))1:x (18
Sl __2< -3 Cypy| 2 x>) Yo(Xi%)=(y())
e F1063) = (YOO D5+ 12y ()X, (19
2(x—X) . . ~ ~ o~
P“( I )> : (12 §2(%: %) = (Y)Y (2= 15¢2) + 12y (X)X 5
I;x
—(y(x)x?);.x(15—18%¢?), (20)

By employing Eq.(10) [the orthogonal relation oP4(x)],

the coefficientC, is then explicitly derived as N ~ ~ ~ ~ ~
; PREEY Ja06R) = (YOO 3 — 153) +(y (0R),:5( 75— 426¢)

2(x—X ~ - -
cq=<2q+1)<y<x)Pq(¥>> A —(YOOX?):x(15-180¢%) — (y (x)x°) 1%
I;x ~ ~3
_[qu21 2 92q-2j -1 X (420 — 28006¢) (21)
=" (=1 il(g—2j)! with the dimensionless quantity= (x—x)/I.

. In conclusion, we have undertaken an extensive analytical
x—x|1 7 study on the GDFA method. Through our extensive studies,
X\ y(x) T o (13 the exact backgroundsr the trends of the fluctuating sys-
lix tems are explicitly extracted out to any order, expressed in
Syl terms of the Legendre polynomial. Thus, no more numerical
Re-call thpat thepth degreAe ba.ckgrour(abr the trendy,(x;x) . fitting is needed and large computation time can be saved. In
Is just 24-oCqPg[2(x—=x)/I]; thus, we have succeeded in ,qition, the obtained explicit expression of the background
extracting the power series expansion of the background (0fq; the trendgcan greatly help the analytical investigation of

the trend) to any orderOur result is applicable for any con- g,cating systems modeled by continuous stochastic differ-
tinuous and analytic backgrouridr the trend regardless of  gptia| equations. For example, it can be used to obtain the

the shape. For illustration, the values@j-Cs are explicitly  gxact relation between the correlation function and the de-
listed as follows, trended width of fluctuations or to investigate the develop-
Co=(y(X))1 (14) ment of local orientational instability in the interfacial super-
0 Iix: roughening phenomena. Moreover, our results can be used to
6 A show that the detrended width of fluctuatiov, only ex-
C1=|—<y(x)(x—x)),;;, (15)  cludes out the influence of the backgrouid the trend on
the scaling behavior of the system and does retain the true
20 c scaling behavior originated from the stochastic nature of the
_ oY Y N . system[17]. Note that all the obtained results are exact and
C2= |2 YOI X=2) % 2<y(x))|;x, (16 thus can be applied to any {11)-dimensional continuous
fluctuating systems.
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