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Extraction of backgrounds in fluctuating systems
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We undertake an extensive analytical study on the ‘‘generalized detrended fluctuation analysis’’ method,
designed to detect the scaling behaviors of fluctuating systems but exclude out the influences of the back-
grounds~or the trends!. Through our extensive studies, we systematically extract out the exact backgrounds~or
the trends! of the fluctuating systems to any order, expressed in terms of the Legendre polynomial. Our results
are exact and can be applied to any (111)-dimensional continuous fluctuating systems.
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Fluctuating systems have drawn considerable interest
the generic behaviors widespread in nature and society,
as molecular-beam-epitaxy interface growth@1,2#, DNA se-
quences@3,4#, physiology signals@5–7#, atmospheric vari-
ability @8#, and currency exchange rates@9#. Plenty of fluc-
tuating systems contain noisy ‘‘signals,’’ which a
statistically heterogeneous and exhibit various types of n
stationarity. For example, in meteorology the variations
the daily maximum temperatures from their average val
have trends in time due to global warming@8#, in financial
markets the currency exchange rates obviously have tre
in time due to the relative economic conditions in differe
countries@9#, and in computational molecular biology th
nucleotide concentrations in DNA sequences are heter
neous and form the mosaic structures@3,4#. Penget al. @3#
then proposed a method ‘‘detrended fluctuation analys
~DFA!, designed to detect and quantify the long-range co
lation in DNA sequences but exclude the artifact long-ran
correlation caused by the DNA’s mosaic structure~patchi-
ness!. The algorithm of the DFA method is given as follow
Let y( i ) be a sequence of lengthN. Then, a sliding observa
tion window of lengthn is chosen and slid across the who
data set. Inside the observation window, the linear tre
ỹ( i )5ai1b of the original profiley( i ) is eliminated, with
the parametersa andb obtained from the least squares fit
the difference between the linear trendỹ( i ) and the original
profile y( i ). Finally, one calculates the variance with resp
to the linear trend from the original profile, takes the avera
over all the windows of lengthn, and then denotes it by
Fd

2(n), the square of the detrended fluctuation function. T
method first demonstrated its usefulness in the investiga
of long-range correlation in the noncoding regions of DN
sequences; since then, it has been widely adopted as a
dard method in analyzing time series problems in vario
fields. In addition, its generalization by including highe
order trends in the analysis, the ‘‘generalized detrended fl
tuation analysis’’~GDFA! method, has recently been nume
cally studied in detail in Refs.@10,11#.

On the other hand, recently much attention has been
cused on the super-rough growth processes for their pec
interfacial morphology@2,12–15#. It has been observe
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both experimentally and numerically that som
(111)-dimensional growth processes are ‘‘super-roug
since their saturated global interfacial widths relative to
average interfacial heights diverge faster than the lateral
tem sizeL. The most distinct feature of the super-rough i
terface is that its local spatiotemporal scaling is differe
from its global spatiotemporal scaling; namely, the local
terfacial widths relative to the average interfacial heigh
measured within a local window of sizel (!L), have very
different dynamic scaling behavior from that of the glob
interfacial widths. The main reason is that all the super-rou
interfacial growth processes are associated with local in
facial orientational instability but, at the same time, wi
fixed or periodic boundary conditions restricting the dev
opment of the global interfacial width. We have propos
@14,15# a definition of the local interfacial widthw̃( l ,t), the
residual local interfacial width, as follows:

w̃2~ l ,t ![^^@h~x,t !2h̃l~x,t !#2& l&L, ~1!

with h(x,t) denoting the interface height from a flat substra
at positionx and timet, h̃l(x,t) denoting the height at posi
tion x of a straight line segment obtained by least square
to the interfacial configuration in the local window of sizel
at a given timet, ^•••& l denoting the lateral spatial averag
over a local window of sizel, ^•••&L denoting the sliding of
the local window over the whole system of sizeL, and finally
the overbar denoting the average over randomness. Cle
w̃( l ,t) describes the width of the interfacial height fluctu
tion relative to the local interfacial orientation within a loc
window of sizel. We then have shown@14,15# that, for the
super-rough growth processes which form the mountains
the valleys in the interface configuration, the residual lo
interfacial widths retrieve the same dynamic scaling as
global interfacial widths. Although the DFA method
mainly used in the analysis of fluctuating time series and
residual local interfacial width is used in the study of t
snapshot of (111)-dimensional super-rough interface mo
phology at a certain time, the spirits of their mathemati
formulation are exactly the same; i.e., they both are desig
to eliminate the influences of the trends~or the back-
grounds!.
©2004 The American Physical Society08-1
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Although the GDFA method is so widely used, there
main some unsettled issues.

~1! For the correct estimate of the scaling exponen
high-order detrending are frequently required@5,6#. Then, it
will involve the numerical least squares fit of many para
eters at the same time and, thus, consume large CPU ti

~2! Many fluctuating time series problems and kinetic
terfacial roughening processes are modeled by continu
stochastic differential equations. Thus, the explicit and ex
expression of the trend~or the background! to any order can
greatly help the analytical study of such equations.

Therefore, we are strongly motivated to take an extens
analytical study on the GDFA method and plan to extract
the exactexpressions of the backgrounds~or the trends! in
fluctuating systems to any order.

First, let y(x) denote some continuous stochastic
quence of lengthL. For example, to describe time seri
problems,x and y simply represent time and the physic
quantity to be measured, respectively; to describe the s
shot of the (111)-dimensional super-rough interface mo
phology at a certain time,x and y then denote the spatia
coordinate along the substrate direction and the interfa
height, respectively. The variance ofy(x) in an observation
window, centered atx̂, of length l is then given as

w2~ l ; x̂![^@y~x!2^y~x!& l ; x̂#
2& l ; x̂ , ~2!

with ^•••& l ; x̂ denoting the average over an observation w
dow, centered atx̂, of length l. Using apth degree polyno-
mial to extract the contribution from the backgrounds~or the
trends!, the pth degree detrended variance ofy(x) in that
observation window of lengthl is defined as

wp
2~ l ; x̂![^@y~x!2 ŷp~x; x̂!#2& l ; x̂ , ~3!

where thepth degree polynomialŷp(x; x̂) is obtained from
the least squares fit toy(x) within that observation window
Naively, people will naturally choose

ŷp~x; x̂!5 (
q50

p

Mq~x2 x̂!q ~4!

with the coefficientMq obtained from the relation

05
]wp

2~ l ; x̂!

]Mq
522K F y~x!2 (

q850

p

Mq8~x2 x̂!q8G
3~x2 x̂!qL

l ; x̂

. ~5!

Then,
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^y~x!~x2 x̂!q& l ; x̂5 (
q850

p

Mq8^~x2 x̂!q1q8& l ; x̂

5 (
q850

p

Mq8
H S l

2D q1q8

@11~21!q1q8#

2~q1q811!
J .

~6!

Consequently, we have

Mq5 (
q850

p

@A21#qq8^y~x!~x2 x̂!q8& l ; x̂ , ~7!

where the elements of thep3p matrix A are

Aqq85

S l

2D q1q8

@11~21!q1q8#

2~q1q811!
. ~8!

Thus, to obtain the explicit form ofMq involves an inverse
transform of thep3p matrix A, which usually relies on
computers for large values ofp. However, the derivation of
the explicit form of the coefficientsMq is necessary for any
further analytical studies such as obtaining the exact rela
betweenw2( l ; x̂) @the original variance ofy(x) in an obser-
vation window, centered atx̂, of length l ] and wp

2( l ; x̂) ~its
pth degree detrended variance in that observation wind!
or exploring the exact influences of the backgrounds~or the
trends! on the fluctuating systems, etc.

Fortunately, with a closer look at Eq.~5!, we note that this
complication of the inverse matrix transform can actually
avoided if the basis ofŷp(x; x̂) is deliberately chosen to b
the polynomials of degree 0 top, orthogonal to one anothe
Legendre polynomialPq(x) @16# is just a perfect candidate
since it is a polynomial of degreeq, given by

Pq~x!5 (
j 50

[q/2]

~21! j
~2q22 j 21!!!

~2 j !!! ~q22 j !!
xq22 j , ~9!

and satisfies the orthogonal relations

E
21

1

dxPq~x!Pq8~x!5
2

2q11
dq,q8 . ~10!

Thus, we choose Legendre polynomialPq@2(x2 x̂)/ l #, in-
stead of (x2 x̂)q, to be the basis ofŷp(x; x̂); namely,

ŷp~x; x̂!5 (
q50

p

CqPqS 2~x2 x̂!

l
D ~11!

with the coefficientCq obtained from the relation
8-2
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05
]wp

2~ l ; x̂!

]Cq
522K F y~x!2 (

q850

p

Cq8Pq8S 2~x2 x̂!

l
D G

3PqS 2~x2 x̂!

l
D L

l ; x̂

. ~12!

By employing Eq.~10! @the orthogonal relation ofPq(x)],
the coefficientCq is then explicitly derived as

Cq5~2q11!K y~x!PqS 2~x2 x̂!

l
D L

l ; x̂

5 (
j 50

[q/2]

~21! j
2q23 j~2q22 j 21!!!

j ! ~q22 j !!

3K y~x!S x2 x̂

l
D q22 j L

l ; x̂

. ~13!

Recall that thepth degree background~or the trend! ŷp(x; x̂)
is just (q50

p CqPq@2(x2 x̂)/ l #; thus, we have succeeded
extracting the power series expansion of the background
the trend) to any order. Our result is applicable for any con
tinuous and analytic background~or the trend! regardless of
the shape. For illustration, the values ofC0–C3 are explicitly
listed as follows,

C05^y~x!& l ; x̂ , ~14!

C15
6

l
^y~x!~x2 x̂!& l ; x̂ , ~15!

C25
30

l 2
^y~x!~x2 x̂!2& l ; x̂2

5

2
^y~x!& l ; x̂ , ~16!

C35
140

l 3
^y~x!~x2 x̂!3& l ; x̂2

21

l
^y~x!~x2 x̂!& l ; x̂ , ~17!

and the correspondingŷ0(x; x̂) to ŷ3(x; x̂) are also displayed
as follows
a

03110
r

ŷ0~x; x̂!5^y~x!& l ; x̂ , ~18!

ŷ1~x; x̂!5^y~x!& l ; x̂112̂ y~x!x̃& l ; x̂x̃, ~19!

ŷ2~x; x̂!5^y~x!& l ; x̂•~ 9
4 215x̃2!112̂ y~x!x̃& l ; x̂x̃

2^y~x!x̃2& l ; x̂~152180x̃2!, ~20!

ŷ3~x; x̂!5^y~x!& l ; x̂~
9
4 215x̃2!1^y~x!x̃& l ; x̂~75x̃2420x̃3!

2^y~x!x̃2& l ; x̂~152180x̃2!2^y~x!x̃3& l ; x̂

3~420x̃22800x̃3! ~21!

with the dimensionless quantityx̃[(x2 x̂)/ l .
In conclusion, we have undertaken an extensive analyt

study on the GDFA method. Through our extensive stud
the exact backgrounds~or the trends! of the fluctuating sys-
tems are explicitly extracted out to any order, expressed
terms of the Legendre polynomial. Thus, no more numer
fitting is needed and large computation time can be saved
addition, the obtained explicit expression of the backgrou
~or the trends! can greatly help the analytical investigation
fluctuating systems modeled by continuous stochastic dif
ential equations. For example, it can be used to obtain
exact relation between the correlation function and the
trended width of fluctuations or to investigate the develo
ment of local orientational instability in the interfacial supe
roughening phenomena. Moreover, our results can be use
show that the detrended width of fluctuationwp only ex-
cludes out the influence of the background~or the trend! on
the scaling behavior of the system and does retain the
scaling behavior originated from the stochastic nature of
system@17#. Note that all the obtained results are exact a
thus can be applied to any (111)-dimensional continuous
fluctuating systems.
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